Master in Life Sciences

A cooperation between BFH, FHNW, HES-SO, ZFH

Module	Genomics and genome analysis
Code	MLS_S08
Degree Program	Master of Science in Life Sciences (MSLS)
Cluster	Bio/Pharma
Specialization	Applied Biosciences
ECTS Credits	4
Workload	120 h: Contact 56 lessons = 42h; Self-study 78 h
Module Coordinator	Name Dr. Bruno Schnyder
	Phone +41 58 606 8659
	Email bruno.schnyder@hevs.ch
	Address HES-SO Valais, Sion
Lecturers	 Dr. Alexandre Kuhn, HES-SO Valais, Sion Dr. Bruno Schnyder, HES-SO Valais, Sion Guest speakers (from industry)
Entry Requirements	Bachelor of Science in Life Science Engineering, in Life Technologies (Biotechnology or Bioanalytical Chemistry) or in a related course of study (Bachelor level)
Learning Outcomes and Competences	The participants will acquire knowledge on gene functions and dysfunctions related to diseases, as well as in the respective approaches and techniques of analysis.
	The student must be able to:
	 understand the gene structures and the related analysis compare and evaluate different analytical systems for genes and genomes search, read and apply scientific literature
Module Content	Principles of genetic information
	 in eukaryotic cells, in comparison with prokaryotic cells coll signaling from transportation factors to gone expression
	Gene analytics
	Sanger's method of gene sequencing
	 genomics, transcriptome analysis on micro-chips ("case-studies")
	Genetic diseases in numan
	 genes and phenotypes (e.g. eye coor) genotype-related diseases (e.g. immunodeficiency) and gene therapy ("case studies")
	Model organisms
	 engineering a gene-deficient KO mouse applications in pharma ("case studies") gene-engineering to produce "sweet proteins" (glycoproteins)

	Genomics and bioinformatics
	Next generation sequencing NGS
	Genomics in industrial biotechnology
	 Basics of microbial genetics Metabolic engineering Synthetic biology
	Gene therapy of genetic diseases
	The Sickle cell anemia paradigm
	Mass spectrometry (MS) meets genomics
	(invited lecture from industry)
Teaching / Learning Methods	 lectures in oral and written form exercise trainings in groups literature study of selected research publications self-study, mainly following the lectures
	active participation in the module is required
Assessment of Learning Outcome	The reports related to each case study, and Journal Clubs must be validated to gain access to the exam.
	Written examination at the end of the semester. The grade of the exam is the grade of the course.
	Remediation : written examination
Bibliography	The lecturers' documentations and scientific papers will be handed out. Key literature books include :
	 Molecular Biology of the Gene, 7th Edition, By James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Losick; Published by Benjamin Cummings (2014); ISBN-10: 0-321-76243-6 ; ISBN-13: 978-0-321-76243-6 Lewin's Genes XI, Jones & Bartlett Learning, Jocelyn E. Krebs, Elliott S.
	Goldstein, Stephen T. Kilpatrick (2014), ISBN-13: 9781449659851
Language	English
Comments	http://cyberlearn.hes-so.ch (requires a login)
Last Update	06.06.2024 / Bruno Schnyder and Alexandre Kuhn